Highly Efficient and Diastereoselective Synthesis of (+**)-Lineatin**

Ramon Alibés,* Pedro de March, Marta Figueredo, Josep Font,* **Marta Racamonde, and Teodor Parella†**

Departament de Quı´*mica and Ser*V*ei de Ressona*`*ncia Magne*`*tica Nuclear, Uni*V*ersitat Auto*`*noma de Barcelona, 08193 Bellaterra, Spain*

josep.font@uab.es

Received February 19, 2004

ORGANIC LETTERS 2004

Vol. 6, No. 9 ¹⁴⁴⁹-**¹⁴⁵²**

ABSTRACT

A linear sequence was used to synthesize (+**)-lineatin in 14 steps and 14% overall yield from a homochiral 2(5***H***)-furanone. Key steps of this synthetic approach feature the diastereoselective construction of a cyclobutene through a photochemical [2** + **2] cycloaddition and a regiocontrolled oxymercuration reaction.**

(+)-Lineatin, **¹**, is the most important constituent of the aggregation pheromone isolated from the frass of the female ambrosia beetle *Trypodendron lineatum* Olivier, which is a deleterious pest to coniferous forests in Europe and North America (Figure 1).¹

Figure 1.

In the past two decades, this cyclobutane monoterpene has attracted the attention of many synthetic chemists.^{2,3} Among the large number of syntheses of lineatin published to date, only a few were devised to provide the pure $(+)$ -enantiomer³ and, with a unique exception,^{3d} they all required resolution steps. Furthermore, the yields achieved in these syntheses were very low $(0.2-4%)$.

[†] Servei de Ressonància Magnètica Nuclear.

Its intriguing structural features, its significant biological activity, and our previous experience in developing syntheses of other naturally occurring cyclobutane pheromones⁴ prompted us to select (+)-lineatin as a synthetic target. In this letter we present a highly stereoselective synthesis of this molecule that is superior to previous approaches and proceeds from a readily available chiral 2(5*H*)-furanone as starting material.

Our synthetic strategy takes advantage of the easy and diastereoselective preparation of cyclobutenes through a novel methodology recently developed in our laboratories.

⁽¹⁾ MacConnell, J. G.; Borden, J. H.; Silverstein, R. M.; Stokkink, E. *J. Chem. Ecol.* **¹⁹⁷⁷**, *³*, 549-561.

⁽²⁾ Racemic lineatin: (a) Mori, K.; Sasaki, M. *Tetrahedron Lett.* **1979**, ¹³²⁹-1332. (b) McKay, W. R.; Ounsworth, J.; Sum, P.-E.; Weiler, L. *Can. J. Chem.* **¹⁹⁸²**, *⁶⁰*, 872-880. (c) White, J. D.; Avery, M. A.; Carter, J. P. *Tetrahedron Lett.* **1983**, 24, 3021-3024. (e) Johnston, B. D.; Slessor, K. *Tetrahedron Lett.* **¹⁹⁸³**, *²⁴*, 3021-3024. (e) Johnston, B. D.; Slessor, K. N.; Oehlschlager, A. C. *J. Org. Chem.* **¹⁹⁸⁵**, *⁵⁰*, 114-117. (f) Skattebøl, L.; Stenstrøm, Y. *Acta Chem. Scand., Ser. B* **¹⁹⁸⁵**, *³⁹*, 291-304. (g) Aljancic-Solaja, I.; Rey, M.; Dreiding, A. S. *Hel*V*. Chim. Acta* **¹⁹⁸⁷**, *⁷⁰*, 1302-1307. (h) Kametani, T.; Toya, T.; Ueda, K.; Tsubuki, M.; Honda, T.
J. Chem. Soc. Perkin Trans. 1 1988. 2433-2438. (i) Baeckström. P. Li. *J. Chem. Soc., Perkin Trans. 1* **1988**, 2433–2438. (i) Baeckström, P.; Li, L.
L.: Polec. I.: Unelius. C. R.: Wimalasiri. W. R. *J. Org. Chem*. **1991**, 56. L.; Polec, I.; Unelius, C. R.; Wimalasiri, W. R. *J. Org. Chem.* **1991**, *56*, ³³⁵⁸-3362. (j) Confalonieri, G.; Marotta, E.; Rama, F.; Righi, P.; Rosini,

G.; Serra, R.; Venturelli, F. *Tetrahedron* **¹⁹⁹⁴**, *⁵⁰*, 3235-3250. (3) (+)-Lineatin: (a) Mori, K.; Sasaki, M. *Tetrahedron* **¹⁹⁸⁰**, *³⁶*, 2197- 2208. (b) Slessor, K. N.; Oehlschlager, A. C.; Johnston, B. D.; Pierce, H. D.; Grewal, S. K.; Wickremesinghe, L. K. G. *J. Org. Chem.* **1980**, *45*, ²²⁹⁰-2297. (c) Mori, K.; Uematsu, T.; Minobe, M.; Yanagi, K. *Tetrahedron* **¹⁹⁸³**, *³⁹*, 1735-1743. (d) Kandil, A. A.; Slessor, K. N. *J. Org. Chem.* **¹⁹⁸⁵**, *⁵⁰*, 5649-5655. (e) Mori, K.; Nagano, E. *Liebigs Ann. Chem.* **¹⁹⁹¹**, $341 - 344.$

This involves the photochemical reaction of 2(*5H)*-furanones with 1,2-dichloroethylene followed by reductive elimination of chlorine.5

Thus, our retrosynthetic analysis of $(+)$ -1 (Scheme 1) proceeded by initial disconnection of the ketal moiety and

unraveling the keto lactone **2**, whose conversion into **1** has been previously reported.^{2e-g,3e} We envisaged that the ketone functionality present in the cyclobutane ring would be regioselectively introduced from a double bond. Given our previous studies on $(+)$ -grandisol,⁴ which is structurally related to the present target, we traced the ketone **2** back to the bicyclic lactone **3**, which in turn could be obtained from the appropriate homochiral $2(5H)$ -furanone **4** by a $[2 + 2]$ photocycloaddition to acetylene or some other synthetic equivalent. Therefore, a key step in our approach was our diastereoselective construction of the cyclobutene ring. Another major challenge was the subsequent regioselective oxidation of the double bond in **3**.

2(5*H*)-Furanone **4** had previously shown good facial discrimination in its photocycloaddition to tetramethylethylene, ethylene, and vinylene carbonate.6 Compound **4** is prepared in three steps and 75% yield from commercially available (*S*)-5-hydroxymethyl-2(5*H*)-furanone according to our previously reported procedure.⁷

Our initial effort focused on the preparation of the key cyclobutene unit **3**. This compound was synthesized by photochemical $[2 + 2]$ cycloaddition of acetylene to 4 in only 23% yield.8 Fortunately, our novel two-step procedure of the photochemical reaction of **4** with (*Z*)-1,2-dichloroethylene, followed by reductive elimination of chlorine,

(8) Alibés, R.; de March, P.; Figueredo, M.; Font, J.; Fu, X.; Racamonde, M.; Alva´rez-Larena, A.; Piniella, J. F.; Parella, T. *J. Org. Chem.* **2003**, *68*, ¹²⁸³-1289.

provided a more effective solution to the problem of accessing compound **3** (Scheme 2).

Thus, irradiation of lactone **4** with (*Z*)-1,2-dichloroethylene in acetonitrile through a quartz filter with a high-pressure mercury lamp for 7.5 h furnished a mixture of seven stereoisomeric cycloadducts **5** in a combined 89% yield. Reductive dehalogenation of this mixture proceeded readily under microwave irradiation 9 giving better yields in much shorter times, compared to the classical thermal conditions.⁵ Hence, when the mixture of dichlorocyclobutane isomers **5** was treated with activated Zn in aqueous EtOH in a sealed vessel at 105 °C in a focused microwave reactor for 20 min, a separable mixture of the known cyclobutenes **3** and **6** was obtained in 79% yield and a ratio 88:12. As a result, the pivotal cyclobutene **3** was now available in 61% yield from lactone **4**.

This outstanding improvement in the preparation of **3** led us to proceed further with our proposed synthetic sequence to (+)-lineatin (Scheme 3). Treatment of **³** with an excess

^{(4) (}a) Alibe´s, R.; Bourdelande, J. L.; Font, J.; Parella, T. *Tetrahedron* **¹⁹⁹⁶**, *⁵²*, 1279-1292. (b) de March, P.; Figueredo, M.; Font, J.; Raya, J.; Alva´rez-Larena, A.; Piniella, J. F. *J. Org. Chem.* **²⁰⁰³**, *⁶⁸*, 2437-2447.

⁽⁵⁾ Alibés, R.; de March, P.; Figueredo, M.; Font, J.; Racamonde, M.; Rustullet, A.; Alva´rez-Larena, A.; Piniella, J. F.; Parella, T. *Tetrahedron Lett.* **²⁰⁰³**, *⁴⁴*, 69-71.

^{(6) (}a) Alibe´s, R.; Bourdelande, J. L.; Font, J. *Tetrahedron: Asymmetry* 1991, 2, 1391-1402. (b) Gregori, A.; Alibés, R.; Bourdelande, J. L.; Font, J. *Tetrahedron Lett.* **¹⁹⁹⁸**, *³⁹*, 6961-6962. (c) Alibe´s, R.; Bourdelande, J. L.; Gregori, A.; Font, J.; Rustullet, A.; Parella, T. *J. Carbohydr. Chem.* **²⁰⁰³***, 22*, 501-511.

⁽⁷⁾ Alibe´s, R.; Bourdelande, J. L.; Font, J.; Gregori, A.; Parella, T. *Tetrahedron* **¹⁹⁹⁶**, *⁵²*, 1267-1278.

of MeLi in THF resulted in addition of two methyl groups to the lactone carbonyl carbon and simultaneous removal of the pivaloyl protecting group, providing triol **7** in 86% yield. Protection of the vicinal diol as the isopropylidene acetal **8** was achieved in 91% yield by reaction of **7** with acetone in the presence of *p*-TsOH.

At this juncture, we intended to introduce the O-functionality at C-2′ through an oxymercuration-demercuration process. Our expectation was that either the hydroxyl group and/or the closer oxygen atom of the dioxolane in **8** would coordinate to and guide the Hg2⁺ to the *endo* face of the olefin. A subsequent trans addition of water should then occur at C-2′ due to the steric hindrance exerted by the methyl group attached to the cyclobutane (Figure 2).¹⁰

Although the configuration of the new stereogenic center would be opposite to that in the target pheromone, it was envisaged that an inversion could be performed at a later stage of the synthesis through an oxidation-reduction sequence.

To our great satisfaction, when **8** was treated with mercuric acetate in THF/water at room temperature for 2.5 h and demercuration was effected with alkaline sodium borohydride, the alcohol **9** was obtained as a single isomer in 92% yield. The structure and relative stereochemistry of **9** were assigned by one- and two-dimensional NMR techniques. Its regiochemistry was unambiguously proven by an HMBC experiment in which the signal of the angular methyl attached to C-3 showed long-ranged coupling to H-4′′, H-2, and one of the protons attached to C-4, while the C-1′ carbon coupled to H-1; this indicated that the hydroxyl group was incorporated at position C-2′ of the cyclobutene **8**. The stereochemistry at the C-1 center of **9** was established on the basis of ¹ H/1 H correlations observed in the phase-sensitive NOESY spectrum, which showed a correlation between H-4′′

and H-1, demonstrating the *exo* orientation of the hydroxyl group.

Next, the secondary alcohol of **9** was selectively benzylated under standard conditions to afford **10**, which after removal of the acetonide protecting group with TFA in a mixture of MeOH/H2O led to the triol **11** in 94% yield.

Our attention was next directed to construction of the pyran moiety. Thus, triol **11** underwent clean oxycyclization to give **12** in 84% yield upon treatment with TsCl and a catalytic amount of DMAP in refluxing pyridine (Scheme 4). The

secondary hydroxyl group was then removed by the Barton-McCombie procedure,¹¹ which involved treating 12 with TCDI in THF and submitting **13** to radical reduction with Bu3SnH in the presence of AIBN. The desired deoxygenated bicyclic ether **14** was obtained in 84% yield for the two steps.

The final stages of our synthetic approach were as follows. Hydrogenolysis of the benzyl ether from **14** led to the alcohol **15**, which after Dess-Martin (periodinane)¹² oxidation afforded the known and highly volatile bicyclic ketone **16**. 3e The latter was treated immediately with RuCl₃/NaIO₄ in the two-phase system of CCl4/H2O to give the keto lactone **2** as a crystalline solid. These transformations all proceeded efficiently, the conversion of **14** into **2** being achieved in

^{(9) (}a) Strauss, C. R. In *Microwa*V*e in Organic Synthesis*; Loupy, A., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2002; Chapter 2, pp 35-60. (b) Gedye, R. N. In *Microwave in Organic Synthesis*; Loupy, A., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2002; Chapter 4, pp 115-146.

^{(10) (}a) Henbest, H. B.; Nicholls, B. *J. Chem. Soc.* **¹⁹⁵⁹**, 227-236. (b) Henbest, H. B.; McElhinney, R. S. *J. Chem. Soc.* **¹⁹⁵⁹**, 1834-1837. (c) Bratt, K.; Garavelas, A.; Perlmutter, P.; Westman, G. *J. Org. Chem.* **1996**, *⁶¹*, 2109-2117. (d) Paquette, L. A.; Bolin, D. G.; Stepanian, M.; Branan, B. M.; Mallavadhani, U. V.; Tae, J.; Eisenberg, S. W. E.; Rogers, R. D. *J. Am. Chem. Soc.* **¹⁹⁹⁸**, *¹²⁰*, 11603-11615. (e) Bernardelli, P.; Moradei, O. M.; Friedrich, D.; Yang, J.; Gallou, F.; Dyck, B. P.; Doskotch, R. W.; Lange, T.; Paquette, L. A. *J. Am. Chem. Soc.* **²⁰⁰¹**, *¹²³*, 9021-9032.

⁽¹¹⁾ Barton, D. H. R.; McCombie, S. W. *J. Chem. Soc., Perkin Trans. ¹* **¹⁹⁷⁵**, 1574-1585.

^{(12) (}a) Dess, D. B.; Martin, J. C. *J. Org. Chem.* **¹⁹⁸³**, *⁴⁸*, 4155-4156. (b) Dess, D. B.; Martin, J. C. *J. Am. Chem. Soc.* **¹⁹⁹¹**, *¹¹³*, 7277-7287.

79% overall yield. The physical properties and NMR spectra of 2 matched those previously reported in the literature.^{3e} Moreover, our product was found to be enantiomerically pure (>99.5% ee) by chiral GC analysis, $[\alpha]_D$ +209.1 (*c* 0.93, acetone) [lit.^{3e} $[\alpha]_D$ +206 (*c* 1.12, acetone)]. The bicyclic keto lactone **2** has previously been transformed into lineatin by double carbonyl reduction with DIBAL-H followed by acid-catalyzed acetalization in 70-74% yield.^{2e-g,3e}

In summary, we have reported a new highly stereoselective formal synthesis of $(+)$ -lineatin in an overall yield of 14% starting from furanone **4**. The synthesis is characterized by a diastereoselective photochemical step and a regiocontrolled oxymercuration reaction.

Acknowledgment. We gratefully acknowledge the financial support of DGES (Project BQU2001-2600) and CIRIT (Project 2001SGR00178) and a grant of *Generalitat de Catalunya* (to M.R.). We thank Dr. Antonio de la Hoz, Universidad de Castilla-La Mancha, for facilitating our use of the microwave oven.

Supporting Information Available: Experimental details and characterization data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0497032